Homological algebra solutions Week 9

1. Consider the first quadrant double complex C' given by

0 c’ B A K’
h g f )
K C 3 B A 0

where the rows are exact, and K = coker(), K’ = ker(a)). We know that there exists a spectral se-
quence whose 0" page is given by the above diagram (with vertical differentials), and who is converging
to the homology of the total complex H,(T'). Notice that since C' has exact rows, the total complex
of C is acyclic by the Acyclic Assembly Lemma. We now compute the pages E}’.7 Ea. of our spectral

sequence. The first page is given by:

0 «— ker(h) «— ker(g) +— ker(f) +— K’

K +——— coker(h) +——— coker(g) +——— coker(f) +— 0

Taking homology, we get the second page :

0 \271 E12,2 KE%A
Ef o Efy E3, E3, 0

Now notice that except for E12,1 and E&O, the differentials leaving and arriving at Efnq are 0, and
this will remain the same for every page after. Since the sequence converges to 0, this means that
E2 = E> =0 for (p,q) not (1,1) or (3,0). But this implies that the sequences

ker(h) «———— ker(g) «— ker(f)

and
coker(h) «————— coker(g) «———— coker(f)



are exact.

We now investigate the map E§,0 — E%,Q. Its kernel (resp. cokernel) is given by the object Eg)o (resp.
E{’Q) of page 3. However, we can argue as before that these are the infinity terms, as no non zero
differentials are ever going to reach or leave them in the later pages. This implies that E;O — EiQ is
an isomorphism. Denote by o : ker(g) — ker(h) and 7 : ker(f) — ker(g) the maps obtained before as
differentials of the first page. We have that coker(o) = E3 j = E} , = ker(7), so we can glue our two
sequences into the following exact sequence :

coker(o) «———— ker(h) +——2—— ker(g) +——— ker(f)
%)
coker(h) «————— coker(g) +———— coker(f) ¢———= kert

Denote by ¢ the compositum € o ¢ o 7. Note that ker(d) = ker(n), as €, ¢ are monic (for example
using Freyd Mitchel’s embedding theorem), so that ker(d) = coker(o) by exactness. Similarly, we have
that coker(d) = coker(e) as 7, ¢ are epic, which in turn implies coker(d) = ker(7). It follows that the
sequence

ker(h) +———  ker(g) «+— ker(f)

)

coker(h) «———— coker(g) «————— coker(f)
is exact, which is exactly the Snake Lemma.

. Let {qu}pﬂ € Z be a regular upper half-plane sequence with E7 = 7,/27 for any p,q with ¢ > 0. Let
H, be the family of objects defined by H,, = Z. Note that for p € Z and F}, = 2PZ, we have a filtration

..CFMH, C FyH, = an

which satisfies F,H,,/F,41H, = 2PZ/2PT'7 = 7./27, =~ Ep; for any p,q with ¢ > 0. In other words,
{E},} weakly converges to H,.. Moreover, we see that this filtration is both Hausdorff and exhaustive

UrRH.=J22=2, (\FH.=()2"Z=0,
p p=>0 p p=>0

so that {E},} approaches H..
Now we set H) = Zg, where Zy is by definition lim Z/2PZ. Letting F, = 2PZy for p > 0, we find
—

as before that {E} } approaches H;. Now it is a classical computation in number theory that we
have an isomorphism Z,/2PZy = 7Z/2PZ. Alternatively, it is a consequence of Proposition 10.15 in
Atiyah-McDonald, Introduction to commutative algebra. It follows that our filtration is also complete

lim H,/F,H, =lim Zy/2"Zy = lim Z/2"Z = Z,.
— — —

As {E},} is regular, we deduce that { £} } converges to H, as wanted.



3. Let n > 2, and suppose the following is a Serre fibration

F L E ul Sm .
We saw in class that there exists a first quadrant spectral sequence whose second page is given by

E? = H,(S", Hy(F)) and which converges to Hp;4(E). We first compute these E2  more explicitly.
First, it is a classical result from topology that the p** homology group of the n-sphere is given by :

Z p=0,n

(5" = tsnm = { 1

By the Universal Coefficient Theorem for Homology, we deduce that for p > 1 :

HQ(F) b= 0,71
0 else.

)

Hy(S", Hy(F)) 2 Hy(S™) ® Hy(F) @ Tor{(Hy—1(S"), Hy(F)) = {

where we have used that the Tor term is always 0, as H,(S™) is either 0 or Z (which is a free Z-module,
and thus in particular flat). On the other hand, when p = 0, we have

Ho(S", Hy(F)) = Hy(F)™ ") = Hy(F).

We have just proven that the p* homology group of S™ with coefficient in any abelian group G is given
by G when p =0 or n, and 0 otherwise. We deduce that the only now zero entries of the second page
of the Serre spectral sequence are located in the 0" and the n'™ columns, where E§ , = E2 | = Hy(F),
for ¢ > 0. Inspecting the shape of the differentials in the next pages, we see that the only differentials
whose domain and codomain are both non zero are located on the n** page :

dz,q : E:’Ll,q = Hq(F) - Hn+q71(F) = Eg,n—i-q—l

Since 0 and n are the only two non zero colums and the differentials on the later pages are always the
zero map, we see that

n _ n+l _ oo n \ _ n+l _ 100
ker(dy ) = B, = By, coker(dy,) = Eg L, 1 = Egp g1

It follows that the sequence

0 EX, Hy(F) —— Hpyq1(F) — Egiqg—1 — 0

is exact.
Now since our sequence converges to the homology groups of E, we have isomorphisms :

E;?q = FpHp+q(E)/Fp—1Hp+q(E)a

for some filtration
. CFHpg(E) C Fpp1Hpig(E) C ... € Hppg(E)

of Hyt4(E). We will now use the convergence of our spectral sequence to deduce some information on
this filtration. Indeed, for p # 0, n, we know that

FoHpiq(E)/Fp1Hpyq(E) = B =E;,=0.

p,q pq



Now by definition of convergence, the filtrations (F,) are Hausdorff, so that F; Hp44(E) = F_1H,1,(E)
for all ¢ < 0 implies that all these terms are zero. Since it is also exhaustive, we deduce that
FiH,,,(E) = H,y4(FE) for every ¢ > n. Using additionally that all F;H,;(E) are isomorphic for
1=0,...,n — 1, we deduce that the filtration is of the shape

0= Flep+q(E) C Filpq(E) = F2Hp+q(E)-~~ = Fno1Hpyq(E) © FanJrq(E) = Herq(E)-

In particular,
E’fq*” = Hq(E)/FOHq(E)v Eg,oq = FOHQ(E)

so that
0 Eg, Hy(E) — EX,_, — 0

n,g—n

is exact. Combining these two sequences with the“edge map” 1, : Hy(F) = Ejf , — EgS, € Hy(E) (see
Addendum 1 to Theorem 5.3.2 in Weibel), we get the Wang sequence. The construction is summarized
by the following diagram, where the Wang sequence is given by the middle row :

0

I

e = Hy(F) —— By —— 0 —— By —— Hya(F) =5 Hyoa(F) —— By —— 0

n,g—n

| I | |

H,(F) & Hy(E) —— Hy1(F) —— H,_y(F) £

H J H

2 o 2
Eq 4 Egy B g1

|

0

. Let n > 2. As seen in class, the following is a Serre fibration :

Qs pst T 8™

We then have the following long exact sequence (see paragraph before Theorem 5.3.2 in Weibel) :
o — M1 (S") —— m(QS") —— m(PS™) —— mp(ST) —— ..

Since PS™ is contractible, we have that 7, (PS™) = 0 for every k > 0. By exactness, this implies that
7 (QS™) =2 741 (S™) for every k > 0. On the other hand, we have that

Ho(QS™) = 2™ 2 7m (5" =7,
We will now recall a fundamental theorem of topology due to Hurewicz (Theorem 4.32 in J.Hatcher,
Algebraic Topology) :

Theorem 0.1. Let X be a path-connected space satisfying mi(X) = 0 for every k <mn. Then H;(X) =0
for every 0 < i < n, and m,(X) = H,(X).



Now it is a classical result from topology that the homotopy groups of S™ are zero for k less than n.
Combining Hurewicz theorem and the last exercise, we deduce that m,(S™) = Z. This means that
m(28™) is 0 for 0 < k < n — 1, and 7,1 (25™) = Z. Applying Hurewicz theorem, we have obtained

so far that
| Z kE=0,n-1
H (25 )_{ 0 0<k<n-—1

For higher dimension, we use the Wang sequence. Once again, we have that Hy(PS™) = 0 for every
k > 0. This implies that for kK > n — 1, we have

Hy(Q8™) = Hp— (1) (25™).

We deduce immediately from this that the k** homology group of the loop space is isomorphic to the
ki one, where kg is the unique integer 0 < ko < n — 1 satisfying ko = k mod n — 1. By the first part,

we deduce that .
n Z if(n—-1)] k
Hi(QS5") = { 0 els(e )|

)

which concludes.



