
Homological algebra solutions Week 9

1. Consider the first quadrant double complex C given by

0 C ′ B′ A′ K ′

K C B A 0

h g f

α

β

,

where the rows are exact, and K = coker(β),K ′ = ker(α). We know that there exists a spectral se-
quence whose 0th page is given by the above diagram (with vertical differentials), and who is converging
to the homology of the total complex H∗(T ). Notice that since C has exact rows, the total complex
of C is acyclic by the Acyclic Assembly Lemma. We now compute the pages E1

•,•, E
2
•,• of our spectral

sequence. The first page is given by:

0 ker(h) ker(g) ker(f) K ′

K coker(h) coker(g) coker(f) 0

.

Taking homology, we get the second page :

0 E2
1,1 E2

1,2 E2
1,3 E2

1,4

E2
0,0 E2

1,0 E2
2,0 E2

3,0 0

.

Now notice that except for E2
1,1 and E2

3,0, the differentials leaving and arriving at E2
p,q are 0, and

this will remain the same for every page after. Since the sequence converges to 0, this means that
E2

p,q = E∞p,q = 0 for (p, q) not (1, 1) or (3, 0). But this implies that the sequences

ker(h) ker(g) ker(f)

and
coker(h) coker(g) coker(f)
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are exact.
We now investigate the map E2

3,0 → E2
1,2. Its kernel (resp. cokernel) is given by the object E3

3,0 (resp.
E3

1,2) of page 3. However, we can argue as before that these are the infinity terms, as no non zero
differentials are ever going to reach or leave them in the later pages. This implies that E2

3,0 → E2
1,2 is

an isomorphism. Denote by σ : ker(g) → ker(h) and τ : ker(f) → ker(g) the maps obtained before as
differentials of the first page. We have that coker(σ) ∼= E2

3,0
∼= E2

1,2
∼= ker(τ), so we can glue our two

sequences into the following exact sequence :

coker(σ) ker(h) ker(g) ker(f)

coker(h) coker(g) coker(f) ker τ

φ

η σ

τ ϵ

.

Denote by δ the compositum ϵ ◦ φ ◦ η. Note that ker(δ) ∼= ker(η), as ϵ, φ are monic (for example
using Freyd Mitchel’s embedding theorem), so that ker(δ) = coker(σ) by exactness. Similarly, we have
that coker(δ) ∼= coker(ϵ) as η, φ are epic, which in turn implies coker(δ) ∼= ker(τ). It follows that the
sequence

ker(h) ker(g) ker(f)

coker(h) coker(g) coker(f)

δ

is exact, which is exactly the Snake Lemma.

2. Let {Er
pq}p,q ∈ Z be a regular upper half-plane sequence with E∞pq

∼= Z/2Z for any p, q with q ≥ 0. Let
H∗ be the family of objects defined by Hn = Z. Note that for p ∈ Z and Fp = 2pZ, we have a filtration

... ⊆ F1Hn ⊆ F0Hn = Hn,

which satisfies FpHn/Fp+1Hn = 2pZ/2p+1Z ∼= Z/2Z ∼= E∞pq for any p, q with q ≥ 0. In other words,
{Er

pq} weakly converges to H∗. Moreover, we see that this filtration is both Hausdorff and exhaustive⋃
p

FpHn =
⋃
p≥0

2pZ = Z,
⋂
p

FpHn =
⋂
p≥0

2pZ = 0,

so that {Er
pq} approaches H∗.

Now we set H ′n = Z2, where Z2 is by definition lim
←−

Z/2pZ. Letting Fp = 2pZ2 for p ≥ 0, we find

as before that {Er
pq} approaches H ′∗. Now it is a classical computation in number theory that we

have an isomorphism Z2/2
pZ2

∼= Z/2pZ. Alternatively, it is a consequence of Proposition 10.15 in
Atiyah-McDonald, Introduction to commutative algebra. It follows that our filtration is also complete
:

lim
←−

Hn/FpHn = lim
←−

Z2/2
pZ2

∼= lim
←−

Z/2pZ ∼= Z2.

As {Er
pq} is regular, we deduce that {Er

pq} converges to H∗ as wanted.
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3. Let n ≥ 2, and suppose the following is a Serre fibration

F E Snι π .

We saw in class that there exists a first quadrant spectral sequence whose second page is given by
E2

p,q = Hp(S
n, Hq(F )) and which converges to Hp+q(E). We first compute these E2

p,q more explicitly.

First, it is a classical result from topology that the pth homology group of the n-sphere is given by :

Hp(S
n) = Hp(S

n,Z) =
{

Z p = 0, n
0 else.

By the Universal Coefficient Theorem for Homology, we deduce that for p ≥ 1 :

Hp(S
n, Hq(F )) ∼= Hp(S

n)⊗Hq(F )⊕ TorZ1 (Hp−1(S
n), Hq(F )) ∼=

{
Hq(F ) p = 0, n
0 else.

,

where we have used that the Tor term is always 0, as Hp(S
n) is either 0 or Z (which is a free Z-module,

and thus in particular flat). On the other hand, when p = 0, we have

H0(S
n, Hq(F )) = Hq(F )π0(S

n) = Hq(F ).

We have just proven that the pth homology group of Sn with coefficient in any abelian group G is given
by G when p = 0 or n, and 0 otherwise. We deduce that the only now zero entries of the second page
of the Serre spectral sequence are located in the 0th and the nth columns, where E2

0,q = E2
n,q = Hq(F ),

for q ≥ 0. Inspecting the shape of the differentials in the next pages, we see that the only differentials
whose domain and codomain are both non zero are located on the nth page :

dnn,q : En
n,q = Hq(F ) → Hn+q−1(F ) = En

0,n+q−1

Since 0 and n are the only two non zero colums and the differentials on the later pages are always the
zero map, we see that

ker(dnn,q) = En+1
n,q = E∞n,q, coker(dnnq) = En+1

0,n+q−1 = E∞0,n+q−1.

It follows that the sequence

0 E∞n,q Hq(F ) Hn+q−1(F ) E∞0,n+q−1 0

is exact.
Now since our sequence converges to the homology groups of E, we have isomorphisms :

E∞p,q
∼= FpHp+q(E)/Fp−1Hp+q(E),

for some filtration
... ⊆ FpHp+q(E) ⊆ Fp+1Hp+q(E) ⊆ ... ⊆ Hp+q(E)

of Hp+q(E). We will now use the convergence of our spectral sequence to deduce some information on
this filtration. Indeed, for p ̸= 0, n, we know that

FpHp+q(E)/Fp−1Hp+q(E) ∼= E∞p,q = E2
p,q = 0.
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Now by definition of convergence, the filtrations (F•) are Hausdorff, so that FiHp+q(E) ∼= F−1Hp+q(E)
for all i < 0 implies that all these terms are zero. Since it is also exhaustive, we deduce that
FiHp+q(E) ∼= Hp+q(E) for every i ≥ n. Using additionally that all FiHp+q(E) are isomorphic for
i = 0, ..., n− 1, we deduce that the filtration is of the shape

0 = F−1Hp+q(E) ⊆ F1Hp+q(E) ∼= F2Hp+q(E)... ∼= Fn−1Hp+q(E) ⊆ FnHp+q(E) ∼= Hp+q(E).

In particular,
E∞n,q−n

∼= Hq(E)/F0Hq(E), E∞0,q
∼= F0Hq(E)

so that
0 E∞0,q Hq(E) E∞n,q−n 0

is exact. Combining these two sequences with the“edge map” ι∗ : Hq(F ) = E2
0,q ↠ E∞0,q ⊆ Hq(E) (see

Addendum 1 to Theorem 5.3.2 in Weibel), we get the Wang sequence. The construction is summarized
by the following diagram, where the Wang sequence is given by the middle row :

0

... Hq(F ) E∞0,q 0 E∞n,q−n Hq−1(F ) Hq−1(F ) E∞0,q−1 0

Hq(F ) Hq(E) Hq−1(F ) Hq−1(F ) ...

E2
0,q E∞0,q E2

0,q−1 ...

0

dn dn

ι∗ ι∗

4. Let n ≥ 2. As seen in class, the following is a Serre fibration :

ΩSn PSn Sn.π

We then have the following long exact sequence (see paragraph before Theorem 5.3.2 in Weibel) :

... πk+1(S
n) πk(ΩS

n) πk(PSn) πk(S
n) ...

Since PSn is contractible, we have that πk(PSn) = 0 for every k > 0. By exactness, this implies that
πk(ΩS

n) ∼= πk+1(S
n) for every k > 0. On the other hand, we have that

H0(ΩS
n) ∼= Zπ0(ΩSn) ∼= Zπ1(S

n) = Z.

We will now recall a fundamental theorem of topology due to Hurewicz (Theorem 4.32 in J.Hatcher,
Algebraic Topology) :

Theorem 0.1. Let X be a path-connected space satisfying πk(X) = 0 for every k < n. Then Hi(X) = 0
for every 0 < i < n, and πn(X) ∼= Hn(X).
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Now it is a classical result from topology that the homotopy groups of Sn are zero for k less than n.
Combining Hurewicz theorem and the last exercise, we deduce that πn(S

n) ∼= Z. This means that
πk(ΩS

n) is 0 for 0 < k < n− 1, and πn−1(ΩS
n) ∼= Z. Applying Hurewicz theorem, we have obtained

so far that

Hk(ΩS
n) =

{
Z k = 0, n− 1
0 0 < k < n− 1

For higher dimension, we use the Wang sequence. Once again, we have that Hk(PSn) = 0 for every
k > 0. This implies that for k ≥ n− 1, we have

Hk(ΩS
n) ∼= Hk−(n−1)(ΩS

n).

We deduce immediately from this that the kth homology group of the loop space is isomorphic to the
kth0 one, where k0 is the unique integer 0 ≤ k0 < n− 1 satisfying k0 ≡ k mod n− 1. By the first part,
we deduce that

Hk(ΩS
n) =

{
Z if (n− 1) | k
0 else

,

which concludes.
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